1. Name: Javier Alvarez Jimenez
 Affiliation: UNAM, Mexico
 E-mail: javier171188@hotmail.com

 Title: The quantum geometric tensor from generating functions

 Abstract: We introduce a new method to compute the Quantum Geometric Tensor, this procedure allow us to compute the Quantum Information Metric and the Berry curvature perturbatively for a theory with an arbitrary interaction Hamiltonian. The calculation uses the generating function method, and it is illustrated with the harmonic oscillator with a linear and a quartic perturbation.

2. Name: Adam Rutkowski
 Affiliation: University of Gdańsk, Poland
 E-mail: fizar@ug.edu.pl

 Title: Necessary and sufficient condition of separability for D-symmetric diagonal states

 Abstract: For multipartite states, we consider a notion of D symmetry. For a system of N qubits, it coincides with the usual permutational symmetry. In the case of N qudits \((d \geq 3)\), the D symmetry is stronger than the permutational one. For the space of all D-symmetric vectors in \((C_d)^\otimes N\), we define a basis composed of vectors which are analogues of Dicke states. The aim of this paper is to discuss the problem of separability of D-symmetric states which are diagonal in this basis. We show that if N is even and \(d \geq 2\) is arbitrary then a positive partial transposition property is a necessary and sufficient condition of separability for D-invariant diagonal states. In this way, we generalize results obtained by Yu [Phys. Rev. A 94, 060101 (R)(2016)] and Wolfe and Yelin [Phys. Rev. Lett. 112, 140402 (2014)]. Our strategy is to use some classical mathematical results on a moment problem.

3. Name: Daniel Gutierrez-Ruiz
 Affiliation: National Autonomous University of Mexico
 E-mail: gutierrezrd90@gmail.com

 Title: Classical analog of the quantum metric tensor

 Abstract: We consider the problem of obtaining a classical analog of the
quantum metric tensor. After presenting the quantum results, we introduce another point of view where distance between quantum states can be measured by means of an operator that generates translations in parameter space. This will provide a natural generalization of Berry's connection, the curvature and the metric to the realm of classical mechanics which we will justify using the semiclassical approximation. In addition to this, it is shown through some examples that both the quantum and classical metric tensors possess a similar structure, differing only by a quantization rule.

4. Name: Hui-Hsiung Kuo
 Affiliation: Louisiana State University
 E-mail: kuomath.lsu.edu

 Title: The Ito formula and near-martingale property for adapted and instantly independent stochastic processes

 Abstract: A stochastic integral for adapted and instantly independent stochastic processes was introduced by Ayed and Kuo in 2008. This new stochastic integral, being inspired by K. Ito in his lecture at the 1976 Kyoto Symposium on Stochastic Differential Equations, provides an extension of the Ito integral to include integrands which can be anticipating. We obtain an extension of the Ito formula to this new stochastic integral. We explain an observation leading to the concept of near-martingale property, which is an extension of the martingale property for the Ito integral. Then we extend the Doob-Meyer decomposition theorem to near-submartingales. The concept of near-martingales is used to study exponential processes and to obtain an extension of the Girsanov theorem. Finally we study linear stochastic differential equations with certain anticipating initial conditions.

5. Name: Pradip Kumar Das
 Affiliation: Indian Statistical Institute, Baranagar, India
 E-mail: das.daspk@gmail.com

 Title: Advances In Interacting Fock Space

 Abstract: I shall be presenting on the recent advances on one mode interacting Fock space.

6. Name: Noboru Watanabe
 Affiliation: Tokyo University of Science, Japan
 E-mail: watanabe@is.noda.tus.ac.jp

 Title: On Complexity of Communication Processes

 Abstract: The quantum entropy was introduced by von Neumann around
1932, which describes the amount of information of the quantum state itself. It was extended by Ohya for C^*-systems before CNT entropy. The quantum relative entropy was first defined by Umegaki for σ-finite von Neumann algebras, which was extended by Araki and Uhlmann for general von Neumann algebras and $*$-algebras, respectively. By introducing a new notion, the so-called compound state, in 1983 Ohya succeeded to formulate the mutual entropy in a complete quantum mechanical system (i.e., input state, output state and channel are all quantum mechanical) describing the amount of information correctly transmitted through the quantum channel. In this talk, we briefly review the Ohya’s S mixing entropy and the quantum mutual entropy for general quantum systems. Based on a concept of structure equivalent, we apply the general frames of quantum communication to the Gaussian communication processes.

7. Name: George Androulakis
Affiliation: University of South Carolina
E-mail: giorgis@math.sc.edu
Title: The role of entropy in quantum communications
Abstract: We will review the properties of quantum entropy and indicate its uses in quantum communications.

8. Name: Duncan Wright
Affiliation: University of South Carolina
E-mail: DW7@math.sc.edu
Title: Optimality in Quantum Data Compression using Dynamical Entropy
Abstract: The notion of lossless compression of strings of pure quantum states of indeterminate-length quantum codes was first introduced by Schumacher and Westmoreland in 2001. Past work has assumed that the strings of quantum data are prepared to be encoded in an independent and identically distributed way. We introduce the notion of quantum stochastic ensembles, allowing us to consider strings of quantum states prepared in a more general way. For any identically distributed (but not necessarily independently distributed) quantum stochastic ensemble we define an associated quantum Markov chain and show that the optimal average codeword length per symbol is equal to the quantum dynamical entropy of the associated quantum Markov chain.

9. Name: Parisa Fatheddin
Affiliation: University of Pittsburgh, Pennsylvania
E-mail: parisa.fatheddin@gmail.com
Title: Asymptotic Limits for some Fluid Models
Abstract: We consider the stochastic Boussinesq and Navier-Stokes equations in two dimensions in the incompressible case. Unlike most previous results on Boussinesq equations, we do not include a diffusion term in the temperature equation and establish the global existence and uniqueness of solutions in the case of additive noise and then achieve the large deviations by the weak convergence approach. As for stochastic Navier-Stokes equations, we prove the large deviations by the classical Azencott method and as a consequence derive the Strassen’s compact law of the iterated logarithm. The results presented are from joint work with Zhaoyang Qi and Dedua Wang.

10. Name: Santanu Dey
Affiliation: IIT Bombay, India
E-mail: santanudey@iitb.ac.in
Title: The order-n minors of certain $(nk) \times n$ matrices
Abstract: We determine sufficient conditions for certain classes of $(nk) \times n$ matrices E to have all order-n minors to be nonzero. For a special class of $(n1) \times n$ matrices E, we give the formula for the order-n minors. As an application we construct subspaces of $C^m \otimes C^n$ of maximal dimension, which does not contain any vector of Schmidt rank less than k and which has a basis of Schmidt rank k for $k = 2, 3, 4$.

11. Name: Artem Pulemotov
Affiliation: The University of Queensland, Australia
E-mail: a.pulemotov@uq.edu.au
Title: The Ricci Iteration on Homogeneous Spheres
Abstract: The Ricci iteration is a discrete analogue of the Ricci flow. Introduced in 2007, it has been studied extensively as a new approach to uniformisation. In this talk, we will discuss the Ricci iteration on spheres that are equipped with transitive Lie group actions. Joint work with Timothy Buttsworth (Queensland), Yanir Rubinstein (Maryland) and Wolfgang Ziller (Pennsylvania).

12. Name: Alexander Wiedemann
Affiliation: University of South Carolina
E-mail: akw@email.sc.edu
Title: The Extended Generator of a Quantum Markov Semigroup
Abstract: Let $\mathcal{B}(\mathcal{H})$ denote the von Neumann algebra of all bounded linear operators on a Hilbert space \mathcal{H}. We prove that every semigroup of Schwarz maps on $\mathcal{B}(\mathcal{H})$ which has a subinvariant faithful normal state induces an
associated semigroup of contractions on the space of Hilbert-Schmidt operators of the \mathcal{H}. We introduce the notion of the extended generator of a semigroup on $\mathcal{B}(\mathcal{H})$ with respect to an orthonormal basis of the \mathcal{H}. We relate the domains and actions of the generator, extended generator, and of the associated semigroup. We describe the form of the (possibly unbounded) extended generator of a quantum Markov semigroup under the assumption that the semigroup possesses an invariant faithful normal state and that the generator of the associated semigroup has compact resolvent.

13. Name: Hyun Jae Yoo
 Affiliation: Hankyong National University, South Korea
 E-mail: yoohj@hknu.ac.kr

 Title: Quantum walks and the associated quantum Markov chains

 Abstract: We discuss some of the dynamical properties of the quantum walks, both the unitary and the open quantum walks, by constructing the associated quantum Markov chains. We start with a brief definition of the quantum walks. Then we construct the associated quantum Markov chains (QMCs). The QMC is a convenient tool for the investigation of the dynamical properties such as reducibility/irreducibility, recurrence/transience. In addition to providing with some examples, we also compare with the classical results. In the meanwhile, we will also see the difference between the unitary quantum walks and the open quantum walks.

14. Name: Kalyan Sinha
 Affiliation: J.N. Center for Advanced Scientific Research, Jakkur, India
 E-mail: kbs-jaya@yahoo.co.in

 Title: Martingales in Quantum Probability II

 Abstract: Starting with a holomorphic semigroup P_t in a Hilbert space H, and the formal Lindblad condition, a canonical contraction-valued cocycle V_t is constructed (cocycle with CCR-or Brownian shift) in H_x Fock space over $L^2(\mathbb{R}_+)$ such that P_t is the (vacuum-) expectation semigroup. If V_t is furthermore isometric, then it induces a \ast-homomorphic flow-cocycle j_t on $B(H)$. It is shown that the cocycle property (i) for V_t in H, and (ii) for j_t on $B(H)$ are equivalent to the quantum martingale property.

15. Name: Mahouton Norbert Hounkonnou
 Affiliation: University of Abomey-Calavi, Benin Republic
 E-mail: hounkonnou@yahoo.fr

 Title: $R(p,q)$- quantum analogs of discrete distributions: general formalism and application
Abstract: In this paper, we investigate and discuss an $R(p,q)$-deformation of basic univariate discrete distributions of the probability theory. We mainly focus on uniform, binomial, logarithmic, Euler, Polya, hypergeometric, and contagious distributions. We discuss relevant $R(p,q)$-deformed factorial moments and factorial moments of a random variable, and derive associated mean value and variance. Furthermore, we establish a recursion relation for the probability distributions, and apply the presented formalism to the well known generalized q-Quesne quantum algebra to deduce related distributions, as a case of study.

16. Name: Alexander Belton
Affiliation: Lancaster University, United Kingdom
E-mail: a.belton@lancaster.ac.uk
Title: To be confirmed
Abstract: To be confirmed

17. Name: Daniel Markiewicz
Affiliation: Ben-Gurion University of the Negev, Israel
E-mail: danielm@math.bgu.ac.il
Title: An E_0-semigroup arising from boundary weight maps

Abstract: An E_0-semigroup of $B(H)$ is a one parameter strongly continuous semigroup of \star-endomorphisms of $B(H)$ that preserve the identity. The classification of E_0-semigroups up to cocycle conjugacy remains an intriguing problem. In this talk we will discuss it in a slightly different guise: the search for a rich class where classification is possible. Every E_0-semigroup that possesses a strongly continuous intertwining semigroup of isometries is cocycle conjugate to an E_0-semigroup obtained by the Bhat dilation of a CP-flow over a separable Hilbert space K. And Robert T. Powers showed how to construct CP-flows from boundary weight maps over K. In this talk we show how to construct and classify all E_0-semigroups (up to cocycle conjugacy) arising from boundary weight maps over finite-dimensional spaces that are q-pure in the following sense. We say an E_0-semigroup α is q-pure if the CP-subordinates β of norm one (i.e. $||\beta_t(I)||=1$ and $\alpha_t-\beta_t$ is completely positive for all $t \geq 0$) are totally ordered in the sense that if β and γ are two CP-subordinates of α of norm one, then $\beta \geq \gamma$ or $\gamma \geq \beta$.

18. Name: Nobuhiro Asai
Affiliation: Aichi University of Education, Japan
19. Name: Bruce Driver
Affiliation: University of California at San Diego
E-mail: bdriver@ucsd.edu
Title: Global Existence of RDEs on Manifolds
Abstract: In this talk we will discuss a theorem guaranteeing the existence of global (in time) solutions to rough path differential equations (RDEs) on a smooth manifold. These results will depend on quantitative estimates of the quality of the truncated Baker-Cambel-Hausdorff-Dynkin formula for vector fields on the manifold.

20. Name: Louis H. Y. Chen
National University of Singapore
E-mail: matchyl@nus.edu.sg
Title: On the error bound in the normal approximation for Jack measures
Abstract: The one-parameter family of Jack measures on partitions of n is an important discrete analog of Dyson’s β ensembles of random matrix theory. In the case $\alpha = 1$, the Jack measure agrees with the Plancherel measure on the irreducible representations of the symmetric group S_n, parametrized by the partitions of n. The normal approximation for the character ratio evaluated at the transposition (12) under the Plancherel measure has been well studied, notably by Fulman (2005, 2006) and Shao and Su (2006). A generalization of the character ratio under the Jack measure has also been studied by Fulman (2004, 2006) and Fulman and Goldstein (2011). In this talk, we present results on both uniform and non-uniform error bounds on the normal approximation for the Jack measure for $\alpha > 0$. Our results improve those in the literature and come very close to solving a conjecture of Fulman (2004). Our proofs use Stein’s method and zero-bias coupling. This talk is based on joint work with Le Van Thanh.

21. Name: Irfan Alam
Louisiana State University
E-mail: irfanalamisi@gmail.com
Title: Some asymptotic applications of integrals over hyperfinite dimensional spheres
Abstract: Beginning with a review of basic nonstandard analysis, the limiting behavior of surface integrals over high-dimensional spheres will be interpreted as Loeb integrals over an "infinite-dimensional sphere." This interpretation will lead to natural proofs of some results on Gaussian Radon transforms of finite dimensional functions over affine subspaces of $\ell^2(\mathbb{R})$. These results are similar in spirit to recent works of Peterson and Sengupta on high-dimensional spherical means, and extend their work in some cases.

22. Name: Luigi Accardi
Volterra Center, Rome, Italy
E-mail: accardi@volterra.uniroma2.it

Title: Extensions of quantum mechanics canonically emerging from the theory of orthogonal polynomials.

Abstract: The algebraic approach to the theory of orthogonal polynomials shows that every classical V-valued random variable with all moments (V is a real vector space) has a canonical quantum decomposition in terms of generalized creation, annihilation and preservation (CAP) operators which satisfy generalized commutation relations (GCR). These GCR characterize the given random variable in the sense of moments. The Heisenberg commutation relations characterize the Gaussian class which is included in the larger class of measures "linearly equivalent" to product measures. The latter class is characterized by the property that CAP operators associated to different degrees of freedom commute. For this class the theory of multi-dimensional orthogonal polynomials is essentially reduced to the tensor product of 1-dimensional cases. For truly interacting classes (i.e. with non-trivial correlations among the components of the random variable) new commutation relations (called type II commutation relations) arise from the commutativity of the multiplication operators associated to different components of the random variable. These new commutation relations are identically satisfied in the class of product measures. It is not easy to prove that a given probability measure is not "linearly equivalent" to a product measure. Recently this result has been obtained for the vacuum distributions of the Virasoro fields. Thus the new approach produces extensions of usual quantum mechanics when V is finite dimensional and of quantum field theory when V is infinite dimensional.

The theory is very young but it has already produced new non-trivial examples of infinite dimensional Lie algebras and of their representations, a unified approach to the various “deformations” of the CCR, as well as many new examples, with the associated C^*- and W^*- algebras, an index of information complexity for probability measures, new examples of quantum and classical Markov semi-groups (the generalized Ornstein-Uhlenbeck semi-groups), . . .
But what has been understood is a tiny fraction of the problems posed by this generalized quantization program. The functorial properties of the generalized Fock functor raise subtle problems some of which are open even in the quadratic case (which at the moment is the best understood among all the new examples). Extensions of the Bogolyubov transformations to the new framework begin to appear (again in the quadratic case) and show the emergence of quite interesting new structures. The structure of the generators of the generalized Ornstein-Uhlenbeck semi-groups is poorly understood, in particular the problem to determine which of them admit integral kernels is open and its solution will require a deep interaction with the theory of classical multi-dimensional orthogonal polynomials and with harmonic analysis. The quadratic extension of the Weyl relations and the corresponding “quadratic Heisenberg group, is fully understood only in the 1-dimensional case, . . . But, even within this multiplicity of open problems, one message clearly emerges from these new developments namely that a future truly interacting (non-Gaussian) quantum field theory cannot be based on Heisenberg commutation relations.

23. Name: Radhakrishnan Balu
 Affiliation: Army Lab
 E-mail: radhakrishnan.balu.civ@mail.mil

 Title: Covariant Quantum Fields via Lorentz Group Representation of Weyl Operators

 Abstract: The building blocks of Hudson-Parthasarathy quantum stochastic calculus start with Weyl operators on a symmetric Fock space. We build representations of Poincaré group in terms of Weyl operators on suitably constructed Boson Fock spaces. We proceed by describing the orbits of homogeneous Lorentz group on R4 and build fiber bundle representations of Poincaré group induced from the stabilizer subgroups (little groups) and build the boson Fock space of the Hilbert space formed of the sections of the bundle. Our Weyl operators are constructed on this space and the corresponding annihilation and creation operators are synthesized in the usual fashion in relativistic theories for space-like, time-like, and light-like fields. Subsequently, we construct systems of imprimitivity (second-quantized SI) by induced representations, from cocycles, and from the basic definition. We indicate the ways to construct adapted processes paving way for building covariant quantum stochastic calculus.

24. Name: Nelia Charalambous
 Affiliation: University of Cyprus
 E-mail: nelia@ucy.ac.cy

 Title: The Yang-Mills heat equation on compact manifolds with boundary

 Abstract: The gauge theoretic format with a nonabelian bundle was first
introduced by Mills and Yang in 1954 to model the strong and weak interactions in the nucleus of a particle. The Yang-Mills heat equation is the gradient flow corresponding to the Yang-Mills functional in this setting. It is a nonlinear weakly parabolic equation whose solutions can blow-up in finite time depending on the dimension. We will consider this equation over compact three-manifolds with boundary, and illustrate its existence and uniqueness properties as well as regularity results for its solutions. We will also present some more recent progress on the properties of the space of solutions. This is joint work with Leonard Gross.

25. Name: Emanuela Sasso
Affiliation: University of Genoa
E-mail: sasso@dim.unic.gi.it

Title: Covariant uniformly continuous quantum Markov semigroups

Abstract: We analyzed the structure of decoherence free-subalgebra $N(T)$ of a uniformly continuous covariant semigroup with respect to a representation of a compact group G on h. In particular, we obtained that, when the representation is irreducible, $N(T)$ is isomorphic to a d-direct product of a I type factor, where the integer d is related to the connected components of G. We extended this result when the representation is reducible and $N(T)$ is atomic by the decomposition of h due to the Peter-Weyl. Finally we tried to remove the hypothesis of atomicity of the decoherence free-subalgebra by using the integral decomposition of $B(h)$, induced by $N(T)$. It is a joint work with Nicolò Ginatta and Veronica Umanità.

26. Name: Brian Hall
Affiliation: University of Notre Dame
E-mail: bhall@nd.edu

Title: Eigenvalues for Brownian motion in the general linear group

Abstract: Following a suggestion of Len Gross, I introduced in 1994 a generalized Segal-Bargmann transform for compact Lie groups. This transform was then given a probabilistic interpretation by Gross and Malliavin in 1996. In 1997, Biane then introduced a “free” version of the Gross-Malliavin result. In this paper, Biane introduced a family of domains in the complex plane, labeled by a time-parameter t. The domains exhibit a transition from simply connected to doubly connected at $t = 4$.

In my talk, I will describe a joint work with Driver and Kemp in which we show that eigenvalues for Brownian motion in the general linear group cluster into Biane’s domain for large N. We also determine the limiting distribution of the eigenvalues. The talk will be self-contained and have lots of pictures.

27. Name: Ching Wei Ho
Title: A Local Limit Theorem for Polynomials in Two Asymptotically Free Matrices

Abstract: Given two freely independent self-adjoint operators x, y in a W^*-probability space (A, τ), it is known that there are two subordination functions ω_1, ω_2 which are unique analytic self-maps on the upper half plane \mathbb{C}^+ such that $\tau((\omega_1(z) - x)^{-1}) = \tau((\omega_2(z) - y)^{-1}) = \tau((\omega_1(z) + \omega_2(z) - z)^{-1} = \tau((z - x - y)^{-1})$ for all $z \in \mathbb{C}^+$ in the upper half plane. The subordination relation can be extended to the matricial case in the framework of operator-valued free probability. Consider two sequences of asymptotically free self-adjoint random matrices A_n, B_n with limiting distributions A, B and some technical conditions, and a noncommutative polynomial P. Using linearization technique, there are three deterministic matrices $\gamma_0, \gamma_1, \gamma_2 \in M_m(\mathbb{C})$ such that the linear polynomial with matrix coefficients

$$L = \gamma_0 \otimes 1 + \gamma_1 \otimes A + \gamma_2 \otimes B$$

satisfies $z - P(A, B)$ is invertible if and only if $ze_{1,1} - L$ is invertible. The two operators $\gamma_1 \otimes A$ and $\gamma_2 \otimes B$ in $M_m(A)$ are freely independent over $M_m(\mathbb{C})$. If the subordination functions between $\gamma_1 \otimes A$ and $\gamma_2 \otimes B$ satisfy certain regularity assumptions, we prove a local limit theorem for polynomials, which says that for all $x \in \mathbb{R}$ in the bulk of the law of $P(A, B)$,

$$\lim_{n \to \infty} \frac{N_n(x)}{nl_n} = \rho(x)$$

where $\rho(x)$ is the density of the distribution of $P(A, B)$ at x, $N_n(x)$ is the number of eigenvalues of $P(A_n, B_n)$ in the interval centered at x with length l_n which tends to zero at a certain rate.

Title: The Gaussian Radon Transform on Infinite-Dimensional Banach Spaces

Abstract: This talk overviews the Ph.D. thesis of the speaker, which constructs a Radon transform on infinite-dimensional Banach spaces using the foundational framework of abstract Wiener spaces, developed by L. Gross. The classical Radon transform can be thought of as a way to obtain the density of an n-dimensional object from its $(n - 1)$-dimensional sections in different directions. A generalization of this transform to infinite-dimensional spaces has the potential to allow one to obtain a function
defined on an infinite-dimensional space from its conditional expectations. As an application, we discuss briefly potential applications to machine learning theory.

29. Name: Ping Zhong
University of Wyoming
E-mail: pzhong@uwyo.edu

Title: Some free probability aspects of meandric systems

Abstract: The talk will consider a family of diagrammatic objects which go under the names of meandric systems or semi-meandric systems. I will review some connections which these objects are known to have with free probability. Inspired by the recent development of free probability for pairs of faces, I will show in particular how the so-called semi-meandric polynomials can be retrieved by the moment series of a natural consideration of operators on the q-Fock space. This is joint work with Alexandru Nica.

30. Name: Malte Gerhold
Affiliations: Technion Israel Institute of Technology and University of Greifswald
E-mail: mgerhold@uni-greifswald.de

Title: Dilations of q-commuting unitaries

Abstract: Let (u,v) be a pair of unitary operators on a Hilbert space H such that $vu = quv$ for $q \in \mathbb{T}$ a complex of modulus 1. For $q' \in \mathbb{T}$, we determine the smallest constant $c > 0$ for which there exists a pair of q' commuting unitaries (U,V) on a larger Hilbert space K containing H such that (u,v) is the compression of (cU,cV) to H.

It turns out that these constants are closely related to the norm of almost Mathieu operators and that the developed techniques can be used to give new and simplified proofs of known results on continuity of the spectra of almost Mathieu operators and of the field of rotation C^*-algebras based on the representation of q-commutation relation by Weyl unitaries on symmetric Fock space.

Joint work with Orr Shalit.

31. Name: Roberto Quezada Batalla
Affiliation: UAM-Iztapalapa, Mexico City
E-mail: roqb@xanum.uam.mx

Title: Dynamics of quantum states induced by transition operators

Abstract: We will discuss the dynamics of states of an open quantum
system with a generator defined in terms of operators performing transitions between two mutually orthogonal subspaces, similar to birth and death transitions in classical stochastic processes or creation and annihilation operators in the quantum setting. It turns out that any stationary state is a mixture of a portion supported on the first subspace and the remaining supported on the orthogonal. Some other notions related with the dynamics such as decoherence free sub-algebra, sub-harmonic projections and fast recurrent subspace will be discussed.

32. Name: Victoria Chayes
Affiliation: Rutgers University
E-mail: vc362@math.rutgers.edu
Title: Interpolation of operators with trace inequalities related to the positive weighted geometric mean
Abstract: The weighted geometric mean of two positive matrices $X \#_t Y$ has been studied in detail for t in $[0, 1]$, both in convexity properties and trace inequalities with relationship to quantum entropy, relative quantum entropy, and Rényi divergences. However, the weighted mean is well-defined for the full range of t in \mathbb{R}, and in fact has the geometric interpretation of the continuation of the unit time geodesic $t \to X \#_t Y$ between X and Y in a Riemannian metric on positive matrices that is invariant under conjugation. I examine the value of $\text{Tr}[e^{tH} \# e^{tK}]$ and variations thereof in comparison to $\text{Tr}[e^{(1-t)H + tK}]$ and $\text{Tr}[e^{(1-t)H} e^{tK}]$, creating the full picture of interpolation of the weighted geometric mean with the Golden-Thompson Inequality. I expand inequalities known for $\text{Tr}[e^{tH} \# e^{tK}]$ with t in $[0, 1]$ to the entire geodesic, and comment on how the exterior inequalities can be used to provide elegant proofs of the known inequalities for t in $[0, 1]$.

33. Name: Kyouhei Ohmura
Affiliation: Tokyo University of Science, Japan
E-mail: ohmura.kyouhei@gmail.com
Title: Rényi Entropy on C^*-Algebras
Abstract: Rényi entropy is a generalization of Shannon entropy, and is widely used in physics and engineering. In this conference, we formulate Rényi entropy on C^*-algebras and show that it includes the traditional quantum Rényi entropy. Furthermore, we use the introduced entropy to classify the states on C^*-algebras.

34. Name: Jacek Wesolowski
Affiliation: Warsaw University of Technology, Warsaw, Poland
E-mail: wesolo@mini.pw.edu.pl
Title: Subordination and boolean cumulants in characterization problems in free probability

Abstract: In classical probability it is well known, Kac (1939), Bernstein (1941), that if X and Y are independent and $U = X + Y$, $V = X - Y$ are independent then X and Y are necessarily Gaussian variables. Moreover, the independence condition can be relaxed to constancy of regressions, e.g. $E(V_i | U) = c_i$, $i = 1, 2$. In non-commutative probability there are free versions of these results for the Wigner distribution, Nica (1996), Bozejko and Bryc (2006). Actually, the latter paper is a free version of the seminal regression characterization of the family of Meixner distributions, Laha abd Lukacs (1960). Another celebrated characterization is due to Lukacs (1955); it says that independence of positive X and Y together with independence of $U = X + Y$ and $V = X/U$ implies that X and Y are gamma random variables. There are regression and/or random matrix versions of this result, see e.g. Olkin and Rubin (1962), Letac and Massam (1998). It has been studied also in free probability, in particular, the constancy of "dual" Lukacs regressions $E(Y_i | X)$, for two values of i, see e.g. Szpojankowski and Wesolowski (2014) or Szpojankowski (2014). Proofs of such results are typically heavily rooted in combinatorics of free cumulants. In the talk we will discuss "dual" Lukacs regressions referring to subordination (introduced in the characterization context in Ejsmont et al. (2017)) and a new idea of approaching freeness through the Boolean cumulants. This is a joint work with Kamil Szpojankowski, Warsaw Univ. of Technology (Poland).

References:

35. Name: Eric Carlen
Affiliation: Rutgers University
E-mail: carlen@math.rutgers.edu
Title: Non-commutative Brascamp-Lieb Inequalities

Abstract: The classical Brascamp-Lieb inequalities control the integral of a product of functions depending on variables in various overlapping subspaces of Euclidean space in terms of a product of their norm in certain Lebesgue spaces. These inequalities have since found many applications, and as Lieb himself later discovered, are intimately connected with Shannon’s Entropy Power Inequality. One way to prove such inequalities is through a heat flow that carries arbitrary trial functions onto Gaussian optimizers. Such a strategy was adapted to the quantum setting in joint work of myself and Elliott Lieb. Recent joint work with Jann Maas on Quantum Markov Semigroups leads to further developments in this direction that will be presented in this talk.

36. Name: Maria Carvalho
Affiliation: Rutgers University
E-mail: mcarvalh@math.rutgers.edu
Title: Spectral Gaps and Entropy Production for Kinetic Master Equations with Degenerate Jump Rates

Abstract: Len Gross’s logarithmic Sobolev inequality has found many uses, one of which is quantifying the rate of approach to local equilibrium in a wide range of dissipative evolution equations. A particularly interesting and challenging case arises with the master equations of kinetic theory, both classical and quantum. The first of these to be investigated
was the original Kac model, for which the collision rate does not depend on the magnitude of the relative velocity of the colliding particles. This model is now well-understood at both the level of spectral gaps, but less so for entropy production. More physically realistic models, especially for hard sphere collisions, still pose significant challenges. In recent work with Carlen and Loss, the Kac conjecture for the spectral gap was proved for hard sphere collisions, and in fact for the full range of collision models all the way from Maxwellian to Super-Hard Spheres. The investigation of Super-Hard Sphere collisions was initiated by Villani, who showed that “speeding up” the rate of high energy collisions led to the strong entropy production inequalities that Cercignani had conjectured. However, his result depends on suppressing the degeneracy at low energies. It is natural to conjecture, that as with the spectral gap, entropy production bounds of Cercignani type hold for super hard sphere collisions without suppressing the low energy degeneracy.

37. Name: Stephen B. Sontz
Affiliation: Centro de Investigacion en Matematicas, Guanajuato, Mexico
E-mail: sontz@cimat.mx
Title: Toeplitz Quantization of Non-commutative Algebras
Abstract: This will be a review of recent research on how to implement Toeplitz Quantization, including creation and annihilation operators using elements of a not necessarily commutative algebra as symbols.

38. Name: James D. Cordeiro
Affiliation: University of Dayton, Ohio
E-mail: jcordeiro1@udayton.edu
Title: The Role of the Group Inverse in the Ergodicity of Level-Dependent Quasi-Birth-and-Death Processes (LDQBDs)
Abstract: Quasi-birth-and-death (QBD) processes are a class of structured Markov chains that extend the classical Birth-Death model by permitting state transitions that may occur between births and deaths. Its level-dependent generalization, the LDQBD, has generated a considerable amount of interest due to the fact that a large number of queueing models belong to this class of processes, and yet an analytic steady-state criterion has not been developed up to the present time. In this presentation, we describe the application of Foster-Lyapunov drift to the determination of necessary and sufficient analytic stability criteria for a subclass of discrete-time LDQBD processes whose transition matrices converge over block rows. Particular emphasis is placed on the role of Markov generalized inverse theory in satisfying the requirements of this drift condition. This is the first known application of the Markov group inverse to an
infinite-state process via application to levels of the transition probability matrix.

39. Name: Maxim Derevyagin
 Affiliation: University of Connecticut
 E-mail: maksym.derevyagin@uconn.edu

Title: On a tridiagonal approach to rational functions generated by the family of the Cauchy distributions and some generalizations

Abstract: The machinery of orthogonal polynomials showed itself very efficient in a wide variety of problems in mathematics, physics, and engineering. Unfortunately, one can only profit from the theory of orthogonal polynomials when the underlying measure or functional has finite moments of all orders. For instance, the Cauchy distribution does not have moments and, thus, orthogonal polynomials are useless in this case. In this talk, I’ll present an approach that generalizes the orthogonal polynomials technique to the case of the Cauchy distribution and more general ones.